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a b s t r a c t

Near infrared (NIR) spectroscopy combined with multivariate calibration was attempted to analyze free
amino acid content of Radix Pseudostellariae. The original spectra of Pseudostellariae samples in wave-
length range of 10000–4000 cm−1 were acquired. Partial least squares (PLS), kernel PLS (k-PLS), back
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propagation neural network (BP-NN), and support vector regression (SVR) algorithms were performed
comparatively to develop calibration models. Some parameters of the calibration models were optimized
by cross-validation. The performance of BP-NN model was better than PLS, k-PLS, and SVR models. The
root mean square error of prediction (RMSEP) and the correlation coefficient (R) of BP-NN model were
0.687 and 0.889 in prediction set respectively. Results showed that NIR spectroscopy combined with mul-
tivariate calibration has significant potential in quantitative analysis of free amino acid content in Radix
ultivariate calibration Pseudostellariae.

. Introduction

Pseudostellariae (viz. Taizishen in Chinese) as a well known tradi-
ional Chinese medicinal herb (TMC) has a sweet and slightly bitter
aste. The dried root, defined as ‘Radix pseudostellariae’, has various
rug activities. Studies have proved out its multiple pharmaco-

ogical effects such as anti-oxidation, anti-depressant, anti-fatigue
nd promoting the immune system, etc. [1]. Pseudostellariae is dis-
ributed widely in China. However, the quality and efficacy of same
pecies are somewhat jagged according to different cultivated area
ith the disparity of growing conditions such as soil and climate.

In the past two decades, some studies had revealed that Radix
seudostellariae contained a variety of chemical ingredients, which
re some beneficial medicinal properties [2]. Among them, free
mino acid is very important. The content of free amino acid is
ften considered as an important quality index of Radix pseu-
ostellariae. Most currently available are techniques restricted to
few chemical analysis tools such as high performance liquid chro-
atography (HPLC), gas chromatographic (GC), ultraviolet (UV)

pectrometry [3]. These methods are precise, but all destructive,

ime-consuming and costly. Therefore, a rapid and non-destructive
nalytical method is essentially required.

Near-infrared (NIR) spectroscopy is a fast, accurate and non-
estructive technique, and it has been proved to be a powerful
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731-7085/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpba.2009.06.040
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analytical tool used in many fields [4–9]. In recent years, NIR
combined with pattern recognition techniques, has attracted con-
siderable attention in discrimination of similar biological materials,
such as tea [10], fruit [11], polysulfone membranes [12] and Chi-
nese herbs [13,14]. NIR spectroscopy also shows promising ability
for chemical content analysis [15–17]. However, few studies have
been reported on the determination of chemical content in Radix
pseudostellariae using NIR spectroscopy.

In this work, the content of free amino acid in Radix Pseu-
dostellariae samples was analyzed by NIR spectroscopy combined
with multivariate calibrations. To compare calibration models, the
algorithms of partial least squares (PLS), kernel PLS (k-PLS), back
propagation neural network (BP-NN), and support vector regression
(SVR) were performed. These models were optimized according
to cross-validation, and the root mean square error of prediction
(RMSEP) and the correlation coefficient (R) in prediction set were
used to evaluate them.

2. Materials and methods

2.1. Sample preparation

All Radix Pseudostellariae samples in the experiments were
acquired from five different geographical regions of PR China

(‘Anhui’ province, ‘Guizhou’ province, ‘Henan’ province, ‘Jiangsu’
province, ‘Fujian’ province), and belong to the same species. Before
data acquisition, all samples were dried in a forced-draught oven
(Shanghai Yi-Heng Machine Co. Shanghai, China) at 105 ◦C for about
5 h to remove moisture from them. After being cleaned through

http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
mailto:q.s.chen@hotmail.com
mailto:zhao_jiewen@ujs.edu.cn
dx.doi.org/10.1016/j.jpba.2009.06.040
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Table 1
Reference measurement of free amino acid content in calibration and prediction
sets.

Subsets Units (%) S.N. Range Mean S.D.
04 H. Lin et al. / Journal of Pharmaceutical

rushing soil off the surface, the samples were crushed into pow-
er by a cyclone mill for consistent measuring. The particle size of
owder was controlled below 80 meshes, then put the sieved in
irtight jars for further analysis.

.2. NIR spectroscopy measurement

Antaris II Near-infrared spectrophotometer (Thermo Electron
o., USA) with an integrating sphere was used to collect the NIR
pectra in reflectance mode. Each spectrum was the average of 32
canning spectra. The range of spectra was from 10000 cm−1 to
000 cm−1, and the data were measured in 1.928 cm−1 intervals,
hich resulted in 3112 variables.

A standard sample cup specifically designed by Thermo Elec-
ron Co. was used for performing the Radix Pseudostellariae spectra
ollection. For each sample, approximately 1 g of dry Radix Pseu-
ostellariae powder was packed into the sample cup. Each sample
as collected three times, and the average of the three spectra was
sed as original information for following analysis. The tempera-
ure was kept around 25 ◦C and the humidity was kept at a steady
evel in the laboratory.

.3. Spectral data processing

Fig. 1a shows NIR spectra of Radix Pseudostellariae samples from
ve different origins. NIR spectra could be affected by the physical
roperties of the samples and other environmental noises. Thus,

t is necessary to perform mathematical processing to reduce the
ystematic noise, and enhance the contribution of the chemical

omposition. In this study, several spectral preprocessing methods
ere applied comparatively. These methods are standard nor-
al variate transformation (SNV), multiplicative scatter correction

MSC), first derivative and second derivative. SNV is a mathematical

Fig. 1. Raw spectra of samples (a), and after SNV preprocessing (b).
Calibration set g/g 57 7.42–0.58 4.54 1.91
Prediction set g/g 28 6.35–0.94 4.47 1.68

S.N., sample number; S.D., standard deviation.

transformation method used to remove slope variation and correct
scatter effects in spectra. Each spectrum is corrected individually by
first centering the spectral values, and then the centered spectrum
is scaled by the standard deviation calculated from the individ-
ual spectral values. MSC is another important procedure for the
correction of scatter light. It is used to modify the additive and
multiplicative effects in the spectra on the basis of different par-
ticle sizes. The technique is also applied to correct for additive and
multiplicative effects in the spectra. First and second derivatives
focus on eliminating baseline drifts and enhancing small spectral
differences [18].

Comparing with these preprocessing methods, SNV method was
as good as MSC, better than first and second derivatives. The rea-
son was that dry Radix Pseudostellariae particle solid was easy to
bring in scatter light. SNV and MSC spectral preprocessing methods
have better ability in correcting light scatter, and can also remove
slope variation [19,20]. Therefore, SNV preprocessing method was
applied in this work, and NIR spectral after SNV preprocessing is
presented in Fig. 1b.

2.4. Active components content

The reference content of free amino acid content was reference
measured by a ninhydrin color [21]. An UV-2401 spectropho-
tometer (Shimadzu Corporation, Japan) was used to detect the
absorbance (E) of the reaction solution in a 1 cm light-path cell at
570 nm. The calibration standard is pyrrolidinecarboxylic acid.

2.5. Software

All algorithms were implemented in Matlab V7.1 (Mathworks,
USA) under Windows XP. Result Software (Antaris II System,
Thermo Electron Co., USA) was used in NIR spectral data acqui-
sition. SVM Matlab codes were downloaded free of charge from
http://www.esat.kuleuven.ac.be/sista/lssvmlab/.

3. Results and discussion

3.1. Calibration models

In this work, 85 samples from five different geographical origins
were investigated, and each geographical origin has 17 samples. All
85 samples were divided into two subsets. One of it called calibra-
tion set was used to build model, and the other called prediction
set was used to test the robustness of model. To avoid bias in subset
division, all samples had been sorted according to their respective
y-value (viz. the reference measurement value of free amino acid
content). One of every three samples was divided into the pre-
diction set. Finally, the calibration set contained 57 spectra; the
remaining 28 spectra constituted the prediction set. As shown in
Table 1, the range of y-value in calibration set covered the range
in the prediction set. Therefore the distribution of the samples is

appropriate in calibration and prediction set.

The performance of the final model was evaluated according
to three types of number, the root mean square error of cross-
validation (RMSECV), the root mean square error of prediction and
the correlation coefficient [22]. For RMSECV, a leave-one-sample-

http://www.esat.kuleuven.ac.be/sista/lssvmlab/
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ut cross-validation was performed: the spectrum of one sample in
he calibration set was left out from this set, and a model was built
ith the remaining spectra of the calibration set. The RMSECV was

hen calculated with following relation:

MSECV =
√∑n

i=1(ŷ\i − yi)
2

n
(1)

here n is the number of samples in the calibration set, yi is the
eference measurement result for sample i, and ŷ\i is the estimated
esult for sample i when the model is constructed with sample i
emoved. The number of factors included in the model was chosen
ccording to the lowest RMSECV. This procedure was repeated for
ach of the preprocessed spectra. In the prediction set, the RMSEP
as calculated as follows:

MSEP =
√∑n

i=1(yi − ŷi)
2

n
(2)

here n is the number of samples in the prediction set, yi is the
eference measurement result for prediction sample i, and ŷi is the
stimated result of the model for prediction sample i.

Finally the optimal model was chosen according to the overall
owest RMSECV. Correlation coefficients between the predicted and
he measured value were calculated for both the calibration and the
rediction sets, using Eq. (3), where ȳ is the mean of the references
easurements results.

=
√

1 −
∑n

i=1(ŷi − yi)
2∑n

i=1(ŷi − ȳ)2
(3)

.2. PLS model

PLS analysis could consider simultaneously the variable matrix
(the physiological properties of interest) and the variable matrix X

the spectral data) [23]. It can establish a regression model to predict
he content of chemical components or responses to the Y-value. So
t is widely implied in NIR spectroscopy analysis [24]. To reduce the
imensionality and compress the original spectral data, the princi-
al components (PCs) obtained from principle component analysis
PCA) were considered as new eigenvectors of the original spectra.
n the development of PLS model, full cross-validation was used to
valuate the quality and prevent over fitting of calibration model.
he number of PLS components (i.e., PCs) can affect the perfor-

ance of PLS model, and it should be optimized by cross-validation

n model calibration. The optimal number of PLS components is
orresponding to the lowest RMSECV value.

Fig. 2a shows the RMSECV values of PLS model under differ-
nt PCs by cross-validation. When using 9 PCs, the lowest RMSECV

Fig. 2. RMSECV values of four calibrat
iomedical Analysis 50 (2009) 803–808 805

could be achieved, and the corresponding PLS model was the opti-
mal model. The RMSEP and the R of PLS model were 0.969 and
0.8075 in prediction set respectively.

3.3. Kernel PLS model

Considering PLS, a linear calibration method, may not provide a
complete solution to the problem. So, k-PLS, a non-linear approach
was also attempted in this work. The main feature of k-PLS is that
the scores and loadings are calculated from the so-called kernel
matrix rather than from the original data matrix [25]. This algo-
rithm allows the PLS calibration to be carried out in a space of
nonlinearly transformed input data—the so-called feature space
[26]. The details of k-PLS algorithm could be found in the literature
[27].

It has been demonstrated that RBF kernel can give a good perfor-
mance under general smoothness assumptions [25]. In this work,
RBF kernel with 1 order was used to build calibration model. As PLS
model, the optimal number of k-PLS components is correspond-
ing to the lowest RMSECV value by cross-validation in calibration
model. Fig. 2b shows the RMSECV values of k-PLS model under
different PCs by cross-validation. When using 5 PCs, the lowest
RMSECV could be obtained, and the corresponding k-PLS model
was the optimal model. Here, the value of RMSEP was 0.828, and R
was 0.838 in prediction set.

3.4. BP-NN model

Back propagation neural network is a powerful data-modeling
tool to capture and represent complex relationships between
inputs and outputs. The eigenvectors (PCs) obtained from PCA are
processed by the neural network. The output expressed the resem-
blance that an object corresponds with a training pattern. Along
with every pass of a training pattern and adjustment of the weight
factors, the network output error will gradually become less until it
meets the desired value. One cycle through all the training patterns
is an epoch. Before the optimal accordance of the network output
error is achieved for all training patterns, numbers of epochs are
required for the back propagation [28–30].

In this work, BP-NN as one of the calibration methods for com-
parison was applied. Three layers (i.e., an input layer, a hidden layers
and an output layer) of BP-NN were arranged. The number of PCs

was also optimized according to cross-validation in this work, and
the optimal PCs determined according with lowest RMSECV value
was used as input layers. The output of BP-NN was the free amino
acid content of interest. The hidden nodes were optimized by ‘trial
and error’ [31], and optimal of hidden nodes is evaluated by the

ion models under different PCs.
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Fig. 3. Contour plot of the optimization the parameters C and �2 in the calibration
set.

Table 2
Comparison of the results from four multivariate calibration models.

Model PCs Prediction set

RMSEP R

PLS 9 0.969 0.8075
06 H. Lin et al. / Journal of Pharmaceutical

inimal mean square error (MSE) value [32]. The learning rate fac-
or and momentum factor were all set to 0.1; the initial weights
ere 0.3; scale function used was the ‘tan h’ function. The permit-

ed regression error was set as 0.01 and the maximal time of training
as 2000. When 6 PCs and 8 hidden layers were selected, the opti-
al performance can be achieved. Finally, the optimum network

rchitecture was obtained with topological architecture 6-8-1.
Fig. 2c shows the RMSECV values of BP-NN model under different

Cs by cross-validation. When 6 PCs were used, the lowest RMSECV
ould be achieved, and the corresponding BP-NN model was the
ptimal model. Here, the value of RMSEP was 0.687, and R was 0.889

n prediction set.

.5. SVR model

Support vector machine (SVM) is typically adopted to describe
lassification problems with support vector methods [33]. However,
ith the introduction of �-insensitive loss function, SVM has been

xtended to solve nonlinear regression estimation problems, and
regression version of SVM is also called support vector regres-

ion [34]. The basic concept of SVR is mapping the nonlinearly
he original data x into a higher dimensional feature space. So it
urns to solve a linear regression problem in this feature space. The
ransformation into higher dimensional space is implemented by a
ernel function [35]. In general, there are three classical kernel func-
ions: polynomial kernel function, RBF kernel function, and sigmoid
ernel function. Selection of kernel function has a high influence
n the performance of SVR. Comparing with other feasible kernel
unctions, RBF could handle the linear and nonlinear relationships
etween the spectra and target attributes. Besides, RBF is able to
educe the computational complexity of the training procedure and
ive a good performance under general smoothness assumptions
36,37]. Thus, the kernel function of SVR in this work was RBF.

Just as other calibration models, the optimal PCs of SVR was also
etermined according to the lowest RMSECV values. Fig. 2d shows
he RMSECV values of SVR model under different PCs by cross-
alidation. When 3 PCs were used, the lowest RMSECV could be
chieved, and the corresponding SVR model was the optimal model.

In order to obtain a good performance, the regularization param-
ter C and parameter � of the kernel function in SVR model have
o be optimized. Parameter C determines the trade-off between

inimizing the training error and minimizing model complexity.
arameter � implicitly defines the non-linear mapping from input
pace to some high-dimensional feature space [38].

Before the parameters were optimized, an initial value was set,
he range of parameters optimization was based on the initial value
etting. Cross-validation in the calibration set was used to direct
he optimization process. As shown in Fig. 3, the search procedure
as carried out in two search steps. First, a comparatively large

tep length in a 10 × 10 grid represented as “·” was applied. Subse-
uently, a much smaller step length was used to obtain the optimal
ombination of these parameters, and the search grid “×” was also
hown in Fig. 3. The optimal search area is determined based on last
tep. The optimal C and �2 for calibration models was found at the
alue of 157.15 and 0.74, respectively. Here, the value of RMSEP was
.7312 and the value of R was 0.8711 in prediction set.

.6. Comparison of four calibration methods

Four multivariate calibration methods, PLS, K-PLS, BP-NN and
VR, were investigated in this work. Table 2 shows the compared

esults in prediction set from the four models. These results implied
hat it was feasible to analyze free amino acid content in Pseudostel-
ariae by NIR spectroscopy. According to investigation of the results
rom four models, k-PLS, BP-NN and SVR models have a better per-
ormance than PLS model. The scatter plot of references measured
K-PLS 5 0.828 0.838
BP-NN 6 0.687 0.889
SVR 3 0.7312 0.8711

and NIR predicted by four calibration models in prediction set were
shown in Fig. 4. It could be explained that k-PLS, BP-NN and SVR
are intended to be universal non-linear approximators. PLS, on the
other hand, is a linear method, although it may handle mild non-
linearities by including extra latent variables into the model. Free
amino acid in radix Pseudostellariae is a mixture contains a vari-
ety of amino acid compositions [39]. The NIR bands are composed
of overtones and combinations of fundamental vibrations of cor-
responding organic groups from the mid-infrared. Therefore, the
relationship between the NIR spectra and free amino acid content
maybe complicated which is more inclined to non-linear rather
than linear. Furthermore, the approach of augmented partial resid-
ual plots (APARPs) was used to detect the relationship between the
NIR spectra and free amino acid content [40]. A quantitative numer-
ical tool (run test) was employed to calculate the non-linearity
based on APARPs methods, and the z-value is 4.614 exceeding the
critical value (|z| = 1.96). So, a non-linearity conclusion is credible,
and moving from PLS to non-linear methods is reasonable. It can
also be explained by some relevant statistical learning theories. In
generally, non-linear method is stronger than linear method in the
level of self-learning and self-adjust. The results indicated that the
latent nonlinear information was helpful to improve the prediction
performance of model.

Investigated between k-PLS, BP-NN and SVR, BP-NN model got
better performance than the other algorithms. It can be conclude
that the topological network architecture of BP-NN may be more
suitable for the analysis of complicated chemical component of
free amino acid in radix Pseudostellariae. Generally, the prediction
of activities is a main objective of the quantitative structure activ-

ity relationships (QSAR) [41]. ANN has proven to be an excellent
approach among QSAR studies [42,43]. Therefore, BP-NN model
achieved a better result in the prediction of free amino acid content
in radix Pseudostellariae.
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Fig. 4. Reference measured versus NIR predicted by

. Conclusion

The overall results showed that free amino acid content in
adix Pseudostellariae can be analyzed by NIR spectroscopy cou-
led with multivariate calibration models. BP-NN model showed
reat potential in quantitative structure activity relationships study
or its topological network architecture. The optimal performance

as achieved when BP-NN model was used and with R = 0.889 and
MSEP = 0.687 in prediction set. These results suggested NIR spec-
roscopy may have commercial and regulatory potential to avoid
ime-consuming work, costly and laborious chemical analysis. Fur-
her studies will be developed at examining the feasibility of NIR
pectroscopy to discriminate mixed species of Radix Pseudostellar-
ae or other herbal medicines.

cknowledgements
This work has been financially supported by the National
atural Science Foundation of PR China (Grant No. 30800666)
nd the National High Technology Research and Development
rogram of China (863 Project, No. 2006AA10Z263). We are grate-

[
[

[

nt multivariate calibration models in prediction set.

ful to the website http://www.esat.kuleuven.ac.be/sista/lssvmlab/,
where we downloaded SVM Matlab codes free of charge.

References

[1] X.Q. Xu, Q.L. Li, J.D. Yuan, Chin. J. Anal. Chem. 35 (2007) 206–210.
[2] Y.Y. Chen, Y. Ding, W. Wang, Tsinghua Sci. Technol. 12 (2007) 389–393.
[3] J. Zhang, Y.B. Li, D.W. Wang, Z.Q. Yin, J.A. Chin, J. Mater. Med. 32 (2007)

1051–1053.
[4] Y.A. Wu, H.J. Kim, J.H. Cho, J. Pharmaceut. Biomed. Anal. 21 (1999) 407–413.
[5] Y.A. Wu, C.H. Cho, H.J. Kim, Microchem. J. 73 (2002) 299–306.
[6] L. Wang, F.S.C. Lee, X.R. Wang, Y. He, LWT 40 (2007) 83–88.
[7] X.B. Huang, H.Y. Yu, H.R. Xu, J. Food Eng. 87 (2008) 303–313.
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